Classical molecular dynamics simulations are based on solving Newton's equations of motion. Using a small timestep, numerical integrators such as Verlet generate trajectories of particles as solutions to Newton's equations. We introduce operators derived using recurrent neural networks that accurately solve Newton's equations utilizing sequences of past trajectory data, and produce energy-conserving dynamics of particles using timesteps up to 4000 times larger compared to the Verlet timestep. We demonstrate significant speedup in many example problems including 3D systems of up to 16 particles.
翻译:经典分子动态模拟以解决牛顿运动方程式为基础。 使用微小的时间步骤, Verlet 等数字集成器生成粒子轨迹作为牛顿方程式的解决方案。 我们引入了使用经常性神经网络的操作员,这些操作员利用过去轨迹数据序列来准确解答牛顿的方程式,并利用比Verlet 时间步骤大4000倍的时间步骤来生成节能的粒子动态。 我们在许多例子中展示了大量的加速问题, 包括3D系统多达16个粒子。