We describe G2Miner, the first Graph Pattern Mining (GPM) framework that runs on multiple GPUs. G2Miner uses pattern-aware, input-aware and architecture-aware search strategies to achieve high efficiency on GPUs. To simplify programming, it provides a code generator that automatically generates pattern-aware CUDA code. G2Miner flexibly supports both breadth-first search (BFS) and depth-first search (DFS) to maximize memory utilization and generate sufficient parallelism for GPUs. For the scalability of G2Miner, we use a customized scheduling policy to balance work among multiple GPUs. Experiments on a V100 GPU show that G2Miner achieves average speedups of 5.4x and 7.2x over two state-of-the-art single-GPU systems, Pangolin and PBE, respectively. In the multi-GPU setting, G2Miner achieves linear speedups from 1 to 8 GPUs, for various patterns and data graphs. We also show that G2Miner on a V100 GPU is 48.3x and 15.2x faster than the state-of-the-art CPU-based system, Peregrine and GraphZero, on a 56-core CPU machine.


翻译:我们描述在多个 GPU 上运行的第一个 G2Miner 图形模式采矿框架( GPMM ) 。 G2Miner 使用模式智能、 输入觉和结构觉搜索策略来实现 GPU 的高效。 为了简化程序,它提供了自动生成模式觉悟 CUDA 代码的代码生成器。 G2Miner 灵活地支持宽度第一搜索( BFS) 和深度第一搜索( DFS), 以最大限度地利用存储量和生成对 GPU 的足够平行。 对于 G2Miner 的可扩展性, 我们使用定制的时间安排政策来平衡多个 GPU的工作。 V100 GPU 的实验显示, G2Miner 在两种最先进的单级GPU系统(Pangolin 和 PBE) 上平均超速5.4x和7.2x。 在多GPU的设置中, G2MER 实现从 1到 8 GPUPU 的线性加速度速度。 我们还显示, 在 V100 GPU- PI 系统上G- Z 和15.2- PI- 更快。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
115+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
前端高性能计算(4):GPU加速计算
前端大全
7+阅读 · 2017年10月26日
干货|GPU加速深度学习
全球人工智能
5+阅读 · 2017年7月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
9+阅读 · 2021年4月21日
Arxiv
6+阅读 · 2020年3月16日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
前端高性能计算(4):GPU加速计算
前端大全
7+阅读 · 2017年10月26日
干货|GPU加速深度学习
全球人工智能
5+阅读 · 2017年7月20日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员