The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We study the task of estimating unknown parameters encoded in a channel in the sequential setting. A sequential strategy is the most general way to use a channel multiple times. Our goal is to establish lower bounds (called Cramer-Rao bounds) on the estimation error. The bounds we develop are universally applicable; i.e., they apply to all permissible quantum dynamics. We consider the use of catalysts to enhance the power of a channel estimation strategy. This is termed amortization. The power of a channel for a parameter estimation is determined by its Fisher information. Thus, we study how much a catalyst quantum state can enhance the Fisher information of a channel by defining the amortized Fisher information. We establish our bounds by proving that for certain Fisher information quantities, catalyst states do not improve the performance of a sequential estimation protocol compared to a parallel one. The technical term for this is an amortization collapse. We use this to establish bounds when estimating one parameter, or multiple parameters simultaneously. Our bounds apply universally and we also cast them as optimization problems. For the single parameter case, we establish bounds for general quantum channels using both the symmetric logarithmic derivative (SLD) Fisher information and the right logarithmic derivative (RLD) Fisher information. The task of estimating multiple parameters simultaneously is more involved than the single parameter case, because the Cramer-Rao bounds take the form of matrix inequalities. We establish a scalar Cramer-Rao bound for multiparameter channel estimation using the RLD Fisher information. For both single and multiparameter estimation, we provide a no-go condition for the so-called Heisenberg scaling using our RLD-based bound.
翻译:该论文的目的是开发一个理论框架来研究量子频道的参数估计。 我们研究的是, 如何同时估算在连续设置的频道中编码的未知参数。 顺序战略是多次使用频道的最一般方式。 我们的目标是在估算错误上设定较低的界限( 称为 Cramis- Rao 界限 ) 。 我们开发的界限是普遍适用的; 也就是说, 它们适用于所有允许的量子动态 。 我们考虑使用催化剂来增强频道估测战略的力量。 这被称为 摊销 。 一个参数估计的频道的功率由它的渔业信息来决定。 因此, 我们研究一个催化剂量状态能在多大程度上通过定义一个频道的摊销信息来增强一个频道的渔业信息。 我们的目标是通过证明某些渔业信息的数量, 催化剂国不会改善顺序估算协议的性能, 而不是平行的。 我们用这个技术术语来评估一个参数, 或多个参数的界限由它的渔业信息 。 我们的界限是普遍和我们同时应用一个频道的递增 。 我们用一个总的 RLD 格式来约束, 因为我们使用一个总的 RLD 格式, 我们使用一个 的校程 。