In medical image analysis, low-resolution images negatively affect the performance of medical image interpretation and may cause misdiagnosis. Single image super-resolution (SISR) methods can improve the resolution and quality of medical images. Currently, super-resolution methods based on generative adversarial networks (GAN) are widely used and have shown very good performance. In this work, we use the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) model to enhance the resolution and quality of medical images. Unlike natural datasets, medical datasets do not have very high spatial resolution. Transfer learning is one of the effective methods which uses models trained with external datasets (often natural datasets), and fine-tunes them to enhance medical images. In our proposed approach, the pre-trained generator and discriminator networks of the Real-ESRGAN model are fine-tuned using medical image datasets. In this paper, we worked on retinal images and chest X-ray images. We used the STARE dataset of retinal images and Tuberculosis Chest X-rays (Shenzhen) dataset. The proposed model produces more accurate and natural textures, and the output images have better detail and resolution compared to the original Real-ESRGAN model.
翻译:在医学图像分析中,低分辨率图像对医学图像判读的性能产生消极影响,并可能导致误诊。单一图像超分辨率(SISR)方法可以提高医学图像的分辨率和质量。目前,基于基因对抗网络(GAN)的超分辨率方法被广泛使用,并表现出非常良好的性能。在这项工作中,我们使用“Real-Energed Super-分辨率基因反向网络(Real-ESRGAN)”模型来提高医学图像的分辨率和质量。与自然数据集不同,医疗数据集的空间分辨率并不很高。传输学习是使用经过外部数据集培训的模型(通常是自然数据集)的有效方法之一,并微调这些模型来增强医学图像。在我们拟议的方法中,我们用医学图像数据集对RE-ESRGAN模型(Real-ESRGAN)模型的预训练生成器和导师网络进行了精细调。我们使用视图像和胸部X射线图像进行工作。我们使用STARED数据集和结核病X光模型模型模型(Sherenz)来制作更精确的原始和原始图像。