In medical image analysis, low-resolution images negatively affect the performance of medical image interpretation and may cause misdiagnosis. Single image super-resolution (SISR) methods can improve the resolution and quality of medical images. Currently, super-resolution methods based on generative adversarial networks (GAN) are widely used and have shown very good performance. In this work, we use the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) model to enhance the resolution and quality of medical images. Unlike natural datasets, medical datasets do not have very high spatial resolution. Transfer learning is one of the effective methods which uses models trained with external datasets (often natural datasets), and fine-tunes them to enhance medical images. In our proposed approach, the pre-trained generator and discriminator networks of the Real-ESRGAN model are fine-tuned using medical image datasets. In this paper, we worked on retinal images and chest X-ray images. We used the STARE dataset of retinal images and Tuberculosis Chest X-rays (Shenzhen) dataset. The proposed model produces more accurate and natural textures, and the output images have better detail and resolution compared to the original Real-ESRGAN model.


翻译:在医学图像分析中,低分辨率图像对医学图像判读的性能产生消极影响,并可能导致误诊。单一图像超分辨率(SISR)方法可以提高医学图像的分辨率和质量。目前,基于基因对抗网络(GAN)的超分辨率方法被广泛使用,并表现出非常良好的性能。在这项工作中,我们使用“Real-Energed Super-分辨率基因反向网络(Real-ESRGAN)”模型来提高医学图像的分辨率和质量。与自然数据集不同,医疗数据集的空间分辨率并不很高。传输学习是使用经过外部数据集培训的模型(通常是自然数据集)的有效方法之一,并微调这些模型来增强医学图像。在我们拟议的方法中,我们用医学图像数据集对RE-ESRGAN模型(Real-ESRGAN)模型的预训练生成器和导师网络进行了精细调。我们使用视图像和胸部X射线图像进行工作。我们使用STARED数据集和结核病X光模型模型模型(Sherenz)来制作更精确的原始和原始图像。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
44+阅读 · 2022年9月6日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员