项目名称: 等离子体共振瑞利散射能量转移纳米光谱研究及其在阴离子分析中的应用

项目编号: No.21477025

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 化学工业

项目作者: 蒋治良

作者单位: 广西师范大学

项目金额: 85万元

中文摘要: 探索简便的、快速的、价廉的、无表面活性剂的、稳定的、具有高强度共振瑞利散射(RRS)的球形金银纳米微粒及聚集体、纳米棒、三角型纳米碟等溶胶合成新方法。采用化学手段调控合成不同粒径和径长比的球形纳米粒子和纳米棒,研究球形纳米粒子、纳米棒尺寸对SPR吸收带、RRS峰的影响及其二者之间的相互关系。对球形金银纳米微粒聚集体、纳米棒、三角型纳米碟等为供体与阴离子配合物为受体的等离子体共振瑞利散射能量转移纳米体系的同步扫描瑞利散射、表面等离子体共振(SPR)吸收、表面增强拉曼散射(SERS)光谱进行探究,筛选高灵敏的金银纳米SPR-RS探针及与纳米探针匹配的高选择性的阴离子配合物纳米光谱分析体系,发展简便快速灵敏选择性测定氟离子、硼酸根等的等离子体共振瑞利散射能量转移(PRRS-ET)纳米光谱分析新方法。

中文关键词: 纳米等离子体;共振瑞利散射;能量转移;阴离子分析;纳米光谱

英文摘要: Some simple, rapid, low-cost, unusing surfactant, stable,beingstrong emission of resonance Rayleigh scattering (RRS) Au/Ag nanoparticle and its aggregation, nanorod and nanoprism sols were synthesized with chemical and electrochemical procedures. Dfferent size nanoparticle and nanorod were used to study the surface plasmon resonance (SPR) absorption band, SPR RRS emission band, and its relationship. Some new plasmonic resonance Rayleigh scattering energy transfer (PRRS-ET) nanospectroscopic analytical systems wolud be explored.One hand, when the plasmonic RRS nanospectroscopic probe was fabricated , the highly selective anion complex was screened that can be adsorbed on the sruface of the nanoprobe, and both donor and the aceptor matched to deveop a sensitive and selective PRRS-ET analytical system to determine trace anions sch as B and F. Other hand, when the anion complex with adsorbtion was selected, some nanospectroscopic probe with different RRS emission band were screened to constructure PRRS-ET nanospectroscopic analytical system to determine trace anions in foods and water samples. Using SPR absorption, SERS with suitable molecular probe, microscopy, laser scattering, and other techniques, the SPR-RRS and PRRS-ET mechanisms were discussed in details.

英文关键词: nanoplasmon;resonance Rayleigh scattering;energy transfer;anion analysis;nanospectroscopy

成为VIP会员查看完整内容
0

相关内容

【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
图对抗防御研究进展
专知会员服务
37+阅读 · 2021年12月13日
专知会员服务
66+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
76+阅读 · 2021年7月23日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
41+阅读 · 2021年2月8日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关VIP内容
【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
图对抗防御研究进展
专知会员服务
37+阅读 · 2021年12月13日
专知会员服务
66+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
76+阅读 · 2021年7月23日
专知会员服务
23+阅读 · 2021年3月18日
专知会员服务
41+阅读 · 2021年2月8日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员