Ideally, visual learning algorithms should be generalizable, for dealing with any unseen domain shift when deployed in a new target environment; and data-efficient, for reducing development costs by using as little labels as possible. To this end, we study semi-supervised domain generalization (SSDG), which aims to learn a domain-generalizable model using multi-source, partially-labeled training data. We design two benchmarks that cover state-of-the-art methods developed in two related fields, i.e., domain generalization (DG) and semi-supervised learning (SSL). We find that the DG methods, which by design are unable to handle unlabeled data, perform poorly with limited labels in SSDG; the SSL methods, especially FixMatch, obtain much better results but are still far away from the basic vanilla model trained using full labels. We propose StyleMatch, a simple approach that extends FixMatch with a couple of new ingredients tailored for SSDG: 1) stochastic modeling for reducing overfitting in scarce labels, and 2) multi-view consistency learning for enhancing domain generalization. Despite the concise designs, StyleMatch achieves significant improvements in SSDG. We hope our approach and the comprehensive benchmarks can pave the way for future research on generalizable and data-efficient learning systems. The source code is released at \url{https://github.com/KaiyangZhou/ssdg-benchmark}.
翻译:理想的情况是,视觉学习算法应普遍适用,用于在新的目标环境中部署时处理任何看不见的域变;数据效率,用于使用尽可能少的标签降低开发成本。为此,我们研究半监督域一般化(SSDG),目的是利用多源、部分标签的培训数据学习一个广域模型。我们设计了两个基准,涵盖在两个相关领域开发的最先进的方法,即域一般化(DG)和半监督学习(SSL)。我们发现,DG方法,通过设计无法处理未贴标签的数据,在SSDG的有限标签下表现不佳;SSLSL方法,特别是FixMatch,取得了更好的结果,但仍远离使用完整标签培训的基本香草模型。我们提议StyMatch,一个简单的方法,将固定组合配有为SSDGDG定制的几种新元素:(1) 减少稀有标签的过度配制模型,以及(2) 用于加强域通用定义的多视角一致性学习。尽管我们进行了简明的研究,但StyMatchSDGS-QS-Sleval