Video generation is one of the most challenging tasks in Machine Learning and Computer Vision fields of study. In this paper, we tackle the text to video generation problem, which is a conditional form of video generation. Humans can listen/read natural language sentences, and can imagine or visualize what is being described; therefore, we believe that video generation from natural language sentences will have an important impact on Artificial Intelligence. Video generation is relatively a new field of study in Computer Vision, which is far from being solved. The majority of recent works deal with synthetic datasets or real datasets with very limited types of objects, scenes, and emotions. To the best of our knowledge, this is the very first work on the text (free-form sentences) to video generation on more realistic video datasets like Actor and Action Dataset (A2D) or UCF101. We tackle the complicated problem of video generation by regressing the latent representations of the first and last frames and employing a context-aware interpolation method to build the latent representations of in-between frames. We propose a stacking ``upPooling'' block to sequentially generate RGB frames out of each latent representation and progressively increase the resolution. Moreover, our proposed Discriminator encodes videos based on single and multiple frames. We provide quantitative and qualitative results to support our arguments and show the superiority of our method over well-known baselines like Recurrent Neural Network (RNN) and Deconvolution (as known as Convolutional Transpose) based video generation methods.


翻译:视频生成是机器学习和计算机视野研究领域最具挑战性的任务之一。 在本文中,我们处理文本到视频生成问题,这是有条件的视频生成形式。 人类可以倾听/阅读自然语言的句子,可以想象或直观描述描述的内容; 因此,我们认为自然语言句子的视频生成将对人工智能产生重要影响。 视频生成是计算机愿景中相对而言的一个新研究领域,远未解决。 最近大部分工作涉及合成数据集或真实的视频生成,其对象、场景和情感种类非常有限。 根据我们的知识,这是关于文本(自由形式句子)的首份工作,以更现实的视频生成数据集(如A2D)或UCFCF101等。 我们解决视频生成的复杂问题,方法是重新淡化第一个和最后一个框架的潜值表达方式,并使用一个已知的内含图解方法来构建介面的跨框架。 我们建议用“普普罗林”的图像(自由句句句句句句句句句句子) 和基于连续的内基底基的图像生成方法, 提供我们以不断更新的内基底底基的内基的内基比的内基的内基的内基比标,并展示的内基基基基基基的图像的图像展示, 提供了我们基于底基底基底基底基底基底基底基底基底基底基底的基底的图像的图像。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Arxiv
18+阅读 · 2020年10月9日
Bridging Knowledge Graphs to Generate Scene Graphs
Arxiv
5+阅读 · 2020年1月7日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员