The debate on whether or not humans have free will has been raging for centuries. Although there are good arguments based on our current understanding of the laws of nature for the view that it is not possible for humans to have free will, most people believe they do. This discrepancy begs for an explanation. If we accept that we do not have free will, we are faced with two problems: (1) while freedom is a very commonly used concept that everyone intuitively understands, what are we actually referring to when we say that an action or choice is "free" or not? And, (2) why is the belief in free will so common? Where does this belief come from, and what is its purpose, if any? In this paper, we examine these questions from the perspective of reinforcement learning (RL). RL is a framework originally developed for training artificial intelligence agents. However, it can also be used as a computational model of human decision making and learning, and by doing so, we propose that the first problem can be answered by observing that people's common sense understanding of freedom is closely related to the information entropy of an RL agent's normalized action values, while the second can be explained by the necessity for agents to model themselves as if they could have taken decisions other than those they actually took, when dealing with the temporal credit assignment problem. Put simply, we suggest that by applying the RL framework as a model for human learning it becomes evident that in order for us to learn efficiently and be intelligent we need to view ourselves as if we have free will.


翻译:有关人类是否拥有自由意志的辩论已经持续了几个世纪。 尽管基于我们目前对自然法则的理解,我们对于自然法则的理解有很好的论点,但大多数人认为,这些观点认为,人类不可能有自由意志,但大多数人相信,他们认为,这种差异是有道理的。 如果我们承认我们没有自由意志,我们面临两个问题:(1) 尽管自由是一个人们直觉理解的非常常用的概念,但当我们说行动或选择是“自由”或不“自由”时,我们实际上指的是什么?(2) 信仰自由意志为何如此常见?这种信念来自何处,其宗旨是什么?在本文中,我们从加强学习的角度来审视这些问题(RL),这种差异是需要加以解释的。如果最初为培训人工智能人员而制定的框架,那么它也可以作为人类决策和学习的计算模型,我们的第一个问题可以通过观察,人们对自由的常识理解与一个模型的信息密切相关,如果我们把一个RL代理人的理念看成是正常的,那么当我们用它自己作为普通的价值观时,我们就可以用它来解释,而我们用它本身的理论来解释它本身的规律决定。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Study of Continual Learning Methods for Q-Learning
Arxiv
66+阅读 · 2022年4月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员