项目名称: 石墨烯基复合光催化剂双历程高效脱氯降解PCBs及机理研究

项目编号: No.21207033

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 环境化学

项目作者: 江国栋

作者单位: 湖北工业大学

项目金额: 24万元

中文摘要: 多氯联苯(PCBs)被列为持久性有机污染物,它对我国环境造成了严重的污染,其治理已成为环境科学研究领域的重要课题。本项目拟采用自组装或原位沉积与光化学还原相结合的方法,以石墨烯为载体,制备石墨烯表面选择性负载纳米Pd和TiO2的新型结构的纳米Pd/TiO2/石墨烯复合光催化剂。该催化剂中石墨烯具有独特的二维结构、高比表面积、电子转移和穿梭作用,因此,可显著增强TiO2的制氢性能,并转移和穿梭光生电子驱动纳米Pd表面进行电化学还原反应,从而实现催化加氢和电化学还原两种历程高效地脱氯降解PCBs。研究PCBs光催化还原脱氯机理,揭示PCBs分子结构与光催化剂脱氯间的构效关系。本项目的核心是基于石墨烯独特的结构和电学性质构建高效脱氯的新型复合光催化剂,丰富PCBs污染控制化学的基础理论;目标是建立一种综合处理PCBs的新方法,为解决我国可持过程中的水污染综合治理提供一定的科学指导。

中文关键词: 还原脱氯;光催化;石墨烯;多氯联苯;氯酚

英文摘要: Polychlorinated biphenyls (PCBs), listed as a persistent organic pollutant, have caused serious pollution in our environment, and its treatment has become an important subject of environment science research. The project is to use the method of combining self-assembly or in situ deposition with photochemical reduction to prepare a novel structure nano Pd/TiO2/graphene composite catalyst, in which graphene is used as a support to simultaneously and selectively load nano TiO2 and Pd metal. Graphene in the catalyst has a unique two-dimensional structure, high specific surface area, transferring and shuttling electrons. It can significantly enhance the hydrogen production of TiO2 and it transfer and shuttle photogenerated electrons to drive the electrochemical reduction reaction on nano-Pd surface. Thus, two processes of catalytic hydrogenation and electrochemical reduction for the efficient dechlorination of PCBs are achieved. The photocatalytic reductive dechlorination mechanism of PCBs is studied, and the structure-activity relationship between PCBs molecular structure and photocatalytic dechlorination is proposed. The core of this project is based on the graphene's unique micro-structure and excellent electrical properties to build novel and efficient composite photocatalysts, and enrich the basic theory of the

英文关键词: reductive dechlorination;photocatalysis;graphene;polychlorinated biphenyl;chlorophenol

成为VIP会员查看完整内容
0

相关内容

强化学习可解释性基础问题探索和方法综述
专知会员服务
85+阅读 · 2022年1月16日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
36+阅读 · 2021年11月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
84+阅读 · 2021年8月11日
专知会员服务
37+阅读 · 2021年7月10日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
56+阅读 · 2021年5月3日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
强化学习可解释性基础问题探索和方法综述
专知会员服务
85+阅读 · 2022年1月16日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
36+阅读 · 2021年11月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
84+阅读 · 2021年8月11日
专知会员服务
37+阅读 · 2021年7月10日
相关资讯
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员