This paper aims to lay the foundations for statistics over local fields, such as the field of $p$-adic numbers. Over such fields, we give characterizations for maximum likelihood estimation and conditional independence for multivariate Gaussian distributions. We also give a bijection between the tropicalization of such Gaussian measures in dimension 2 and supermodular functions on the 2-dimensional discrete cube. Finally, we introduce the Bruhat-Tits building as a parameter space for Gaussian distributions and discuss their connections to conditional independence statements as an open problem.


翻译:本文旨在为本地域的统计打下基础, 如 $p$- accit number 。 在此类域中, 我们对多变量高斯分布的最大可能性估计和有条件独立性进行定性。 我们还对二维高斯测量仪的热带化和二维离散立方体的超模块函数进行分辨。 最后, 我们引入布鲁哈特- Tits 建筑作为高斯分布的参数空间, 并讨论它们与有条件独立声明的关联性, 将其作为一个开放的问题 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
233+阅读 · 2020年4月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
233+阅读 · 2020年4月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员