The partial conjunction null hypothesis is tested in order to discover a signal that is present in multiple studies. We propose methods for multiple testing of partial conjunction null hypotheses which make use of conditional $p$-values based on combination test statistics. Specific examples comprise the Fisher combination function and the Stouffer combination function. The conditional validity of the corresponding $p$-values is proved for certain classes of one-parametric statistical models, including one-parameter natural exponential families. The standard approach of carrying out a multiple test procedure on the (unconditional) partial conjunction $p$-values can be extremely conservative. We suggest alleviating this conservativeness, by eliminating many of the conservative partial conjunction $p$-values prior to the application of a multiple test procedure. This leads to the following two step procedure: first, select the set with partial conjunction $p$-values below a selection threshold; second, within the selected set only, apply a family-wise error rate or false discovery rate controlling procedure on the conditional partial conjunction $p$-values. By means of computer simulations and real data analyses, we compare the proposed methodology with other recent approaches.


翻译:为了发现多种研究中存在的信号,对部分连成无效假设进行了测试。我们建议采用多种方法对部分连成无效假设进行多次测试,这些假设使用基于组合测试统计的有条件美元价值。具体例子包括Fisher组合功能和Stouffer组合功能。相应的美元价值的有条件有效性对某些类单数统计模型,包括单参数自然指数家庭,得到证明。对部分连成美元价值(不附带条件的)进行多次测试的标准方法可能是极为保守的。我们建议通过在应用多种测试程序之前消除许多保守的部分连成美元价值来缓解这种保守性。这导致以下两步程序:首先,在选择门槛下选择部分连成美元价值的一组;第二,仅在选定的参数内,对有条件连成部分连成美元价值采用家庭错误率或虚假发现率控制程序。我们通过计算机模拟和真实数据分析,将拟议方法与其他近期方法进行比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
0+阅读 · 2021年12月3日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员