This study aims to enable more reliable automated post-disaster building damage classification using artificial intelligence (AI) and multi-view imagery. The current practices and research efforts in adopting AI for post-disaster damage assessment are generally (a) qualitative, lacking refined classification of building damage levels based on standard damage scales, and (b) trained based on aerial or satellite imagery with limited views, which, although indicative, are not completely descriptive of the damage scale. To enable more accurate and reliable automated quantification of damage levels, the present study proposes the use of more comprehensive visual data in the form of multiple ground and aerial views of the buildings. To have such a spatially-aware damage prediction model, a Multi-view Convolution Neural Network (MV-CNN) architecture is used that combines the information from different views of a damaged building. This spatial 3D context damage information will result in more accurate identification of damages and reliable quantification of damage levels. The proposed model is trained and validated on reconnaissance visual dataset containing expert-labeled, geotagged images of the inspected buildings following hurricane Harvey. The developed model demonstrates reasonably good accuracy in predicting the damage levels and can be used to support more informed and reliable AI-assisted disaster management practices.


翻译:这项研究旨在利用人工智能(AI)和多视角图像,进行更可靠的灾后建筑损害自动化分类; 采用人工智能(AI)和多视角图像,目前采用人工智能进行灾后损害评估的做法和研究工作一般是:(a) 质量,缺乏根据标准损害尺度对建筑损害水平的精确分类,以及(b) 以空中或卫星图像培训,但观点有限的航空或卫星图像虽然具有指示性,但并非对损害程度的完全描述; 为了能够更准确和可靠地对损害程度进行自动量化,本研究建议使用以多层地面和空中观测的形式对建筑物进行更全面的视觉数据; 采用这种空间觉察到的损害预测模型,采用多视角神经网络(MV-CNN)结构,将不同观点中的信息综合起来; 这种空间3D环境损害信息将更准确地确定损害程度和对损害程度的可靠量化; 拟议的模型经过培训和验证,以包含专家标注的、地理标注的哈维飓风后受视察的建筑物的视觉数据集。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年8月3日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员