Data-informed predictive maintenance planning largely relies on stochastic deterioration models. Monitoring information can be utilized to update sequentially the knowledge on time-invariant deterioration model parameters either within an off-line (batch) or an on-line (recursive) Bayesian framework. With a focus on the quantification of the full parameter uncertainty, we review, adapt and investigate selected Bayesian filters for parameter estimation: an on-line particle filter, an on-line iterated batch importance sampling filter, which performs Markov chain Monte Carlo (MCMC) move steps, and an off-line MCMC-based sequential Monte Carlo filter. A Gaussian mixture model is used to approximate the posterior distribution within the resampling process in all three filters. Two numerical examples serve as the basis for a comparative assessment of off-line and on-line Bayesian estimation of time-invariant deterioration model parameters. The first case study considers a low-dimensional, nonlinear, non-Gaussian probabilistic fatigue crack growth model that is updated with sequential crack monitoring measurements. The second high-dimensional, linear, Gaussian case study employs a random field to model corrosion deterioration across a beam, which is updated with sequential measurements from sensors. The numerical investigations provide insights into the performance of off-line and on-line filters in terms of the accuracy of posterior estimates and the computational cost, when applied to problems of different nature, increasing dimensionality and varying sensor information amount. Importantly, they show that a tailored implementation of the on-line particle filter proves competitive with the computationally demanding MCMC-based filters. Suggestions on the choice of the appropriate method in function of problem characteristics are provided.
翻译:数据知情的预测维护规划主要依赖于随机退化模型。 监测信息可用于在离线( 批量) 或在线( 递归) 巴伊西亚框架范围内, 连续更新关于时间变化模型参数的知识。 以完整参数不确定性量化为重点, 我们审查、 调整和调查选定的巴伊西亚过滤器, 以估算参数: 在线粒子过滤器, 在线迭代批量重要抽样过滤器, 以马可夫链 Monte Carlo ( MC ) 移动步骤和以离线MC MC 为基础的连续蒙特卡洛 过滤器。 使用高斯混合模型, 在所有三个过滤器中, 以近距离( 批量) 或在线( 递解) 损模型的分布。 有两个数字示例作为基础, 用于对离线和在线对时间变化模型的估算值进行比较评估: 在线粒子过滤器, 一个在线的分批量的分批量抽样抽样抽样抽样抽样检查, 一个以连续跟踪测测测测测测测测测的模型更新的快速增长模型。 高斯( 水平) 向实地测算, 实地测算法显示, 实地测算的递测算的数值值的数值的数值的数值的数值的数值值的数值值的数值值的数值值的计算, 向实地测算, 向实地测算的数值的数值的数值的数值的数值值的数值值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的计算值的计算值的计算值的数值的数值值的数值的数值的数值的数值的数值的数值值的数值值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值的数值