Accelerometers enable an objective measurement of physical activity levels among groups of individuals in free-living environments, providing high-resolution detail about physical activity changes at different time scales. Current approaches used in the literature for analyzing such data typically employ summary measures such as total inactivity time or compositional metrics. However, at the conceptual level, these methods have the potential disadvantage of discarding important information from recorded data when calculating these summaries and metrics since these typically depend on cut-offs related to exercise intensity zones chosen subjectively or even arbitrarily. Furthermore, much of the data collected in these studies follow complex survey designs. Then, using specific estimation strategies adapted to a particular sampling mechanism is mandatory. The aim of this paper is two-fold. First, a new functional representation of a distributional nature accelerometer data is introduced to build a complete individualized profile of each subject's physical activity levels. Second, we extend two nonparametric functional regression models, kernel smoothing and kernel ridge regression, to handle survey data and obtain reliable conclusions about the influence of physical activity in the different analyses performed in the complex sampling design NHANES cohort and so, show representation advantages.
翻译:加速计有助于客观地衡量自由生活环境中个人群体之间的体育活动水平,提供在不同时间尺度上物理活动变化的高清晰度细节。文献中目前用于分析这些数据的方法通常采用简要措施,例如完全不活动时间或构成指标。然而,在概念层面,这些方法具有潜在缺点,即在计算这些摘要和指标时,抛弃记录数据中的重要信息,因为这些数据通常取决于与练习主观或甚至任意选择的强度区有关的截断。此外,这些研究中收集的大部分数据是在复杂的调查设计之后收集的。然后,采用适合特定取样机制的具体估计战略是强制性的。本文的目的是双重的。首先,采用分配性质加速计数据的新功能说明,以建立每个主体的物理活动水平的完整个性化特征。第二,我们扩展两个非参数性功能回归模型,内核滑和内核脊回归,以处理调查数据,并获得关于复杂取样设计NHANES组群不同分析中物理活动影响的可靠结论,因此显示其优点。