Weight-sharing neural architecture search aims to optimize a configurable neural network model (supernet) for a variety of deployment scenarios across many devices with different resource constraints. Existing approaches use evolutionary search to extract a number of models from a supernet trained on a very large data set, and then fine-tune the extracted models on the typically small, real-world data set of interest. The computational cost of training thus grows linearly with the number of different model deployment scenarios. Hence, we propose Transfer-Once-For-All (TOFA) for supernet-style training on small data sets with constant computational training cost over any number of edge deployment scenarios. Given a task, TOFA obtains custom neural networks, both the topology and the weights, optimized for any number of edge deployment scenarios. To overcome the challenges arising from small data, TOFA utilizes a unified semi-supervised training loss to simultaneously train all subnets within the supernet, coupled with on-the-fly architecture selection at deployment time.
翻译:面向所有的一次性转移(TOFA)神经网络架构搜索旨在优化可配置的神经网络模型(超级网络),以适用于多种在不同资源限制下的设备上的部署场景。现有的方法使用进化搜索从一个在非常大数据集上训练的超级网络中提取一些模型,然后在通常很小的真实数据集上对提取的模型进行微调。如此一来,训练的计算成本随着不同模型的部署场景数量呈现线性增长的趋势。因此,我们提出了一种面向小数据集的TOFA用于超级网络风格的训练,其在任意数量的边缘部署场景下具有恒定的计算训练成本。针对小数据带来的挑战,TOFA利用统一的半监督训练损失来同时训练超级网络中的所有子网,并配合在部署时实时的架构选择来优化定制的神经网络模型,包括拓扑结构和权重参数。