VIP内容

传统观点认为,大量数据支撑起了尖端人工智能的发展,大数据也一直被奉为打造成功机器学习项目的关键之匙。但AI ≠ Big Data,该研究指出,制定规则时如果将——人工智能依赖巨量数据、数据是必不可少的战略资源、获取数据量决定国家(或公司)的人工智能进展—— 视为永恒真理,就会“误入歧途”。介于当下大环境过分强调大数据却忽略了小数据人工智能的存在,低估了它不需要大量标记数据集或从收集数据的潜力,研究人员从四个方面“缩短大小实体间AI能力差距、减少个人数据的收集、促进数据匮乏领域的发展和避免脏数据问题”说明了“小数据”方法的重要性。 https://cset.georgetown.edu/publication/small-datas-big-ai-potential/

成为VIP会员查看完整内容
0
35
参考链接
Top