We study learning-augmented streaming algorithms for estimating the value of MAX-CUT in a graph. In the classical streaming model, while a $1/2$-approximation for estimating the value of MAX-CUT can be trivially achieved with $O(1)$ words of space, Kapralov and Krachun [STOC'19] showed that this is essentially the best possible: for any $\epsilon > 0$, any (randomized) single-pass streaming algorithm that achieves an approximation ratio of at least $1/2 + \epsilon$ requires $\Omega(n / 2^{\text{poly}(1/\epsilon)})$ space. We show that it is possible to surpass the $1/2$-approximation barrier using just $O(1)$ words of space by leveraging a (machine learned) oracle. Specifically, we consider streaming algorithms that are equipped with an $\epsilon$-accurate oracle that for each vertex in the graph, returns its correct label in $\{-1, +1\}$, corresponding to an optimal MAX-CUT solution in the graph, with some probability $1/2 + \epsilon$, and the incorrect label otherwise. Within this framework, we present a single-pass algorithm that approximates the value of MAX-CUT to within a factor of $1/2 + \Omega(\epsilon^2)$ with probability at least $2/3$ for insertion-only streams, using only $\text{poly}(1/\epsilon)$ words of space. We also extend our algorithm to fully dynamic streams while maintaining a space complexity of $\text{poly}(1/\epsilon,\log n)$ words.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员