This paper studies the problem of finding the median of N distinct numbers distributed across networked agents. Each agent updates its estimate for the median from noisy local observations of one of the N numbers and information from neighbors. We consider an undirected random network that is connected on average, and a noisy observation sequence that has finite variance and almost surely decaying bias. We present a consensus+innovations algorithm with clipped innovations. Under some regularity assumptions on the network and observation model, we show that each agent's local estimate converges to the set of median(s) almost surely at an asymptotic sublinear rate. Numerical experiments demonstrate the effectiveness of the presented algorithm.
翻译:本文研究了在网络代理中找到分布在网络代理中N不同数字的中位数的问题。 每个代理从对一个N数字和来自邻居的信息的当地杂音观测中更新其对中位数的估计。 我们考虑的是平均连接的无方向随机网络,以及具有有限差异和几乎肯定衰减偏差的杂音观测序列。 我们提出了一个带有剪裁创新的共识+创新算法。 在网络和观察模型的一些常规假设下,我们显示每个代理的当地估计数几乎可以肯定地与一组中位数相汇。 数字实验证明了所提出的算法的有效性。