For sequence generation, both autoregressive models and non-autoregressive models have been developed in recent years. Autoregressive models can achieve high generation quality, but the sequential decoding scheme causes slow decoding speed. Non-autoregressive models accelerate the inference speed with parallel decoding, while their generation quality still needs to be improved due to the difficulty of modeling multi-modalities in data. To address the multi-modality issue, we propose Diff-Glat, a non-autoregressive model featured with a modality diffusion process and residual glancing training. The modality diffusion process decomposes the modalities and reduces the modalities to learn for each transition. And the residual glancing sampling further smooths the modality learning procedures. Experiments demonstrate that, without using knowledge distillation data, Diff-Glat can achieve superior performance in both decoding efficiency and accuracy compared with the autoregressive Transformer.


翻译:对于序列生成,近年来已经开发了自动递减模型和非自动递减模型。自动递减模型可以达到高生成质量,但顺序解码计划导致缓慢解码速度。非自动递减模型加快推论速度,同时同时解码,而由于数据中多模式建模的难度,其生成质量仍有待改进。为了解决多模式问题,我们提议Diff-Glat,这是一个非自动递减模型,其特点是模式扩散进程和残余结晶训练。模式扩散进程解构模式,并减少每次过渡学习的模式。残留的浮化取样进一步平滑模式学习程序。实验表明,不使用知识蒸馏数据,Diff-Glat可以在解码效率和准确性两方面都达到优异于自动递减变变器的更高性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员