Social interactions determine many economic behaviors, but information on social ties does not exist in most publicly available and widely used datasets. We present results on the identification of social networks from observational panel data that contains no information on social ties between agents. In the context of a canonical social interactions model, we provide sufficient conditions under which the social interactions matrix, endogenous and exogenous social effect parameters are all globally identified. While this result is relevant across different estimation strategies, we then describe how high-dimensional estimation techniques can be used to estimate the interactions model based on the Adaptive Elastic Net GMM method. We employ the method to study tax competition across US states. We find the identified social interactions matrix implies tax competition differs markedly from the common assumption of competition between geographically neighboring states, providing further insights for the long-standing debate on the relative roles of factor mobility and yardstick competition in driving tax setting behavior across states. Most broadly, our identification and application show the analysis of social interactions can be extended to economic realms where no network data exists.
翻译:社会互动决定了许多经济行为,但大多数公开可得和广泛使用的数据集中并不存在关于社会联系的信息。我们从观察小组数据中提出社会网络的识别结果,而观察小组数据中没有任何关于各种行为主体之间社会联系的信息。在一种卡通的社会互动模式中,我们提供了充分的条件,使社会互动矩阵、内生和外生社会影响参数能够在全球范围内得到确认。虽然这一结果在不同的估计战略中具有相关性,但我们接着描述了如何使用高维估计技术来估计基于适应性弹性网GM方法的互动模式。我们采用了研究美国各州税收竞争的方法。我们发现,所查明的社会互动矩阵意味着税收竞争与地理相邻国家间竞争的共同假设明显不同,为长期辩论要素流动性的相对作用和衡量各州征税行为竞争提供了进一步见解。最广泛的是,我们的识别和应用表明社会互动分析可以扩展到没有网络数据的经济领域。