An important component of computer vision research is object detection. In recent years, there has been tremendous progress in the study of construction site images. However, there are obvious problems in construction object detection, including complex backgrounds, varying-sized objects, and poor imaging quality. In the state-of-the-art approaches, elaborate attention mechanisms are developed to handle space-time features, but rarely address the importance of channel-wise feature adjustments. We propose a lightweight Optimized Positioning (OP) module to improve channel relation based on global feature affinity association, which can be used to determine the Optimized weights adaptively for each channel. OP first computes the intermediate optimized position by comparing each channel with the remaining channels for a given set of feature maps. A weighted aggregation of all the channels will then be used to represent each channel. The OP-Net module is a general deep neural network module that can be plugged into any deep neural network. Algorithms that utilize deep learning have demonstrated their ability to identify a wide range of objects from images nearly in real time. Machine intelligence can potentially benefit the construction industry by automatically analyzing productivity and monitoring safety using algorithms that are linked to construction images. The benefits of on-site automatic monitoring are immense when it comes to hazard prevention. Construction monitoring tasks can also be automated once construction objects have been correctly recognized. Object detection task in construction site images is experimented with extensively to demonstrate its efficacy and effectiveness. A benchmark test using SODA demonstrated that our OP-Net was capable of achieving new state-of-the-art performance in accuracy while maintaining a reasonable computational overhead.


翻译:计算机视觉研究的一个重要组成部分是物体探测。近年来,在建筑场地图像的研究方面取得了巨大的进展。然而,在建筑物体探测方面显然存在一些问题,包括复杂的背景、不同大小的物体和低成像质量。在最先进的方法中,开发了处理时空特点的精细关注机制,但很少涉及频道特征调整的重要性。我们提议了一个轻量优化定位模块,以改善基于全球特征亲近性联系的频道关系,该模块可用于确定每个频道的优化加权权重。首先,通过将每个频道与一套特定特征地图的剩余频道进行比较,从而计算出中间网络优化的准确性位。然后,将利用所有频道的加权集成来代表每个频道。OP-Net模块是一个一般的深层神经网络模块,可以连接到任何深层的神经网络。利用深层的学习显示它们有能力从图像中识别各种近实时的物体。机器智能有可能使每个频道的中间网络的精确性能优化位置,办法是将每个频道与每个频道的剩余频道进行比较集成的频道。然后,将所有频道的加权组合组合用于代表每个频道。 OP的自动分析效率,一旦通过自动分析建筑的测试,就能够显示建筑的精确的精确监测,就可以在建筑的精确测测测测测图中,就可以进行。在建筑的精确测测得。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员