Weakly-Supervised Semantic Segmentation (WSSS) segments objects without a heavy burden of dense annotation. While as a price, generated pseudo-masks exist obvious noisy pixels, which result in sub-optimal segmentation models trained over these pseudo-masks. But rare studies notice or work on this problem, even these noisy pixels are inevitable after their improvements on pseudo-mask. So we try to improve WSSS in the aspect of noise mitigation. And we observe that many noisy pixels are of high confidence, especially when the response range is too wide or narrow, presenting an uncertain status. Thus, in this paper, we simulate noisy variations of response by scaling the prediction map multiple times for uncertainty estimation. The uncertainty is then used to weight the segmentation loss to mitigate noisy supervision signals. We call this method URN, abbreviated from Uncertainty estimation via Response scaling for Noise mitigation. Experiments validate the benefits of URN, and our method achieves state-of-the-art results at 71.2% and 41.5% on PASCAL VOC 2012 and MS COCO 2014 respectively, without extra models like saliency detection. Code is available at https://github.com/XMed-Lab/URN.
翻译:虽然作为一个价格,生成的伪面片存在明显的噪音像素,这导致对这些伪面片进行亚最佳分解模型。但是,关于这一问题的研究很少,即使这些杂杂杂的像素在假面片改进后也是不可避免的。因此,我们试图在减少噪音方面改进SSS。我们发现,许多杂杂杂的像素具有很高的信心,特别是当反应范围太广或太窄,呈现不确定状态时。因此,在本文中,我们通过缩放预测地图多次来模拟反应的噪音变异,以显示不确定性估计。然后,不确定性被用来加权分解损失以缓解响亮的监督信号。我们称之为URN,通过降噪反应缩缩放,从不确定的估测算中缩略出。实验验证了URN的好处,我们的方法在2014年的PASALB/MCUC 模型中实现了71.2%和41.5%的状态-艺术结果,而没有在2012年的PASACLU/MCSGR 中分别使用。