The cake-cutting problem involves dividing a heterogeneous, divisible resource fairly between $n$ agents. Br\^{a}nzei et al. [6] introduced {\em generalised cut and choose} (GCC) protocols, a formal model for representing cake-cutting protocols as trees with "cut" and "choose" nodes corresponding to the agents' actions, and if-else statements. In this paper, we identify an alternative and simpler extensive-form game model for cake-cutting protocols, that we call {\em branch choice} (BC) protocols. We show that the class of protocols we can represent using this model is invariant under certain modifications to its definition. We further prove that any such protocol can be converted to a restricted form in which the agents first cut the cake and then get to choose between various branches leading to different allocations. Finally, we show that this model has the same expressive power as GCC protocols, i.e. they represent the same class of protocols up to a notion of equivalence involving the bounds on envy that each agent can guarantee for themselves. For this purpose, we introduce a new notion of envy-equivalence of protocols.
翻译:蛋糕切除问题涉及将各种不同的、可分割的资源在美元代理商之间公平分配。 Br ⁇ a}nzei et al. [6] 引入了“ 笼统切除” 和选择} (GCC) 协议, 将蛋糕切除协议作为树的形式模式, 与代理商的行动相对应的“ 切除” 和“ 切除” 节点”, 以及 if- else 语句。 在本文中, 我们为蛋糕切除协议确定了一种替代的、 简单化的、 广泛形式的游戏模式, 即我们称之为 \ {em 分支选择} (BC) 协议。 我们显示, 使用这一模式的各类协议在定义的某些修改中是不可变的。 我们进一步证明, 任何这样的协议都可以转换为一种限制性的形式, 使代理商首先切除蛋糕, 然后在导致不同分配的不同分支之间做出选择。 最后, 我们表明, 这个模式具有与海合会协议相同的明确性, 即它们代表了相同的协议的类别, 相当于一种对每个代理商能够保证的嫉妒的界限的等同概念。 为此, 我们引入了一种新的嫉妒观念。