Multi-object tracking is a cornerstone capability of any robotic system. The quality of tracking is largely dependent on the quality of the detector used. In many applications, such as autonomous vehicles, it is preferable to over-detect objects to avoid catastrophic outcomes due to missed detections. As a result, current state-of-the-art 3D detectors produce high rates of false-positives to ensure a low number of false-negatives. This can negatively affect tracking by making data association and track lifecycle management more challenging. Additionally, occasional false-negative detections due to difficult scenarios like occlusions can harm tracking performance. To address these issues in a unified framework, we propose to learn shape and spatio-temporal affinities between tracks and detections in consecutive frames. Our affinity provides a probabilistic matching that leads to robust data association, track lifecycle management, false-positive elimination, false-negative propagation, and sequential track confidence refinement. Though past 3D MOT approaches address a subset of components in this problem domain, we offer the first self-contained framework that addresses all these aspects of the 3D MOT problem. We quantitatively evaluate our method on the nuScenes tracking benchmark where we achieve 1st place amongst LiDAR-only trackers using CenterPoint detections. Our method estimates accurate and precise tracks, while decreasing the overall number of false-positive and false-negative tracks and increasing the number of true-positive tracks. We analyze our performance with 5 metrics, giving a comprehensive overview of our approach to indicate how our tracking framework may impact the ultimate goal of an autonomous mobile agent. We also present ablative experiments and qualitative results that demonstrate our framework's capabilities in complex scenarios.
翻译:多点跟踪是任何机器人系统的基石能力。 跟踪质量主要取决于所使用探测器的质量。 在许多应用程序中, 如自主车辆, 最好不要超度检测对象, 以避免因误测而导致灾难性的结果。 因此, 目前最先进的三维探测器会产生高比例的假阳性, 以确保假阴性的数量较少。 这可能会通过使数据关联和跟踪生命周期管理更具挑战性来对跟踪产生消极影响。 此外, 偶尔会发生误差性全面检查, 这会损害所使用探测器的质量。 在许多应用程序中, 如自主车辆等, 最好比超度检测对象好, 以避免因误测而导致的灾难性结果。 因此, 我们的近似性能提供了一种概率匹配率, 从而导致数据关联性、 跟踪生命周期管理、 假阴性消除、 假阴性传播、 测序信任性改进。 尽管过去三维多位模型处理了一系列问题领域的部分内容, 我们提供了第一个自足框架, 用来在统一框架内, 不断使用三亚轨道 精确的轨道, 显示我们准确的轨道, 我们的精确路径, 也显示我们的数据路径, 我们的精确路径 。