This paper reports the first successful application of a differentiable architecture search (DARTS) approach to the deepfake and spoofing detection problems. An example of neural architecture search, DARTS operates upon a continuous, differentiable search space which enables both the architecture and parameters to be optimised via gradient descent. Solutions based on partially-connected DARTS use random channel masking in the search space to reduce GPU time and automatically learn and optimise complex neural architectures composed of convolutional operations and residual blocks. Despite being learned quickly with little human effort, the resulting networks are competitive with the best performing systems reported in the literature. Some are also far less complex, containing 85% fewer parameters than a Res2Net competitor.
翻译:本文报告了首次成功应用不同建筑搜索(DARTS)方法解决深层假冒和假冒探测问题的情况。神经结构搜索的一个实例是,DARTS运行在一个连续的、不同的搜索空间上,使建筑和参数都能够通过梯度下降得到优化。基于部分连接的DARTS的解决方案在搜索空间使用随机通道掩蔽来减少GPU时间,自动学习和优化由卷发操作和残余区块组成的复杂神经结构。尽管在人类努力不力的情况下很快学习,但由此产生的网络与文献中报告的最佳运行系统相比具有竞争力。有些网络也远不如Res2Net竞争者复杂得多,其参数比Res2Net竞争者少85%。