A fiducial marker system usually consists of markers, a detection algorithm, and a coding system. The appearance of markers and the detection robustness are generally limited by the existing detection algorithms, which are hand-crafted with traditional low-level image processing techniques. Furthermore, a sophisticatedly designed coding system is required to overcome the shortcomings of both markers and detection algorithms. To improve the flexibility and robustness in various applications, we propose a general deep learning based framework, DeepTag, for fiducial marker design and detection. DeepTag not only supports detection of a wide variety of existing marker families, but also makes it possible to design new marker families with customized local patterns. Moreover, we propose an effective procedure to synthesize training data on the fly without manual annotations. Thus, DeepTag can easily adapt to existing and newly-designed marker families. To validate DeepTag and existing methods, beside existing datasets, we further collect a new large and challenging dataset where markers are placed in different view distances and angles. Experiments show that DeepTag well supports different marker families and greatly outperforms the existing methods in terms of both detection robustness and pose accuracy. Both code and dataset are available at \url{https://herohuyongtao.github.io/research/publications/deep-tag/}.
翻译:字形标记系统通常由标记、探测算法和编码系统组成。标记的外观和探测稳健性一般受到现有探测算法的限制,这些算法是用传统的低层次图像处理技术手工制作的。此外,还需要一个经过精密设计的编码系统来克服标记和探测算法的缺点。为了提高各种应用中的灵活性和稳健性,我们提议了一个一般深层次的深层次学习框架,即深塔格,用于定义标记的设计和探测。深塔格不仅支持发现现有的各种标记家庭,而且还使得有可能设计具有定制本地模式的新标记家庭。此外,我们提议了一个有效的程序,在没有手动说明的情况下综合飞行上的培训数据。因此,深塔格可以很容易地适应现有的和新设计的标记家庭。为了验证DeepTag和现有方法,除了现有的数据集外,我们还进一步收集了一个新的大型和具有挑战性的数据集,其中标记位于不同的距离和角度。 实验显示, 深塔格很好地支持不同的标记家庭,并且大大超越了现有各种标记家庭的标记家庭,并且大大超越了在可获取的稳性/ ASU/ precreqour 数据/ precreasqual 和/ prestalset= 。