We consider the lossy quantum source coding problem where the task is to compress a given quantum source below its von Neumann entropy. Inspired by the duality connections between the rate-distortion and channel coding problems in the classical setting, we propose a new formulation for the lossy quantum source coding problem. This formulation differs from the existing quantum rate-distortion theory in two aspects. Firstly, we require that the reconstruction of the compressed quantum source fulfill a global error constraint as opposed to the sample-wise local error criterion used in the standard rate-distortion setting. Secondly, instead of a distortion observable, we employ the notion of a backward quantum channel, which we refer to as a "posterior reference map", to measure the reconstruction error. Using these, we characterize the asymptotic performance limit of the lossy quantum source coding problem in terms of single-letter coherent information of the given posterior reference map. We demonstrate a protocol to encode (at the specified rate) and decode, with the reconstruction satisfying the provided global error criterion, and therefore achieving the asymptotic performance limit. The protocol is constructed by decomposing coherent information as a difference of two Holevo information quantities, inspired from prior works in quantum communication problems. To further support the findings, we develop analogous formulations for the quantum-classical and classical variants and express the asymptotic performance limit in terms of single-letter mutual information quantities with respect to appropriately defined channels analogous to posterior reference maps. We also provide various examples for the three formulations, and shed light on their connection to the standard rate-distortion formulation wherever possible.


翻译:我们考虑的是损失量源编码问题, 任务在于将给定量源压缩到 von Neumann entropy 下方的量源中。 在古典环境中, 率扭曲和频道编码问题之间的双重联系启发下, 我们为损失量源编码问题提出新的配方。 这个配方与现有的量量子调制理论在两个方面不同。 首先, 我们要求压缩量源的重建要达到全球错误限制, 而不是标准调制设置中使用的样本式地方错误标准。 其次, 我们使用一个后向量数据频道的概念, 我们称之为“前置参考地图”, 来测量重建错误。 我们用这些词来描述损失量源编码问题, 单字母一致的调和调和调和调, 我们用一个协议来编码( 特定速率 ), 并且根据所提供的全球误差标准, 从而实现“ 度” 缩略图的连接 。 协议是, 将 校正级 数据 定义 的 格式, 以 校正 的 格式 格式 定义 格式 定义 格式, 定义 格式 格式 定义 格式 格式 定义 格式 的 格式, 定义 定义 格式 格式 格式 的 的, 定义 格式 定义 格式 格式 格式 的,, 定义 定义 格式 格式 格式,, 定义 格式 格式 格式 格式,,,, 定义 格式 格式 格式 格式,, 格式,,,, 格式 格式,, 定义 定义, 定义 定义 定义 格式,, 定义 定义,,,, 定义 定义,,,,,,,,, 定义,,,,,,, 定义 定义,,, 定义 定义 定义 定义 定义,,, 定义 定义,,,,, 定义 定义 定义 定义, 定义,,,,,, 定义 定义 定义 定义, 定义

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员