Power iteration is a fundamental algorithm in data analysis. It extracts the eigenvector corresponding to the largest eigenvalue of a given matrix. Applications include ranking algorithms, recommendation systems, principal component analysis (PCA), among many others. In this paper, we introduce multiplication-avoiding power iteration (MAPI), which replaces the standard $\ell_2$-inner products that appear at the regular power iteration (RPI) with multiplication-free vector products which are Mercer-type kernel operations related with the $\ell_1$ norm. Precisely, for an $n\times n$ matrix, MAPI requires $n$ multiplications, while RPI needs $n^2$ multiplications per iteration. Therefore, MAPI provides a significant reduction of the number of multiplication operations, which are known to be costly in terms of energy consumption. We provide applications of MAPI to PCA-based image reconstruction as well as to graph-based ranking algorithms. When compared to RPI, MAPI not only typically converges much faster, but also provides superior performance.
翻译:电源迭代是数据分析的一个基本算法。 它提取了与给定矩阵最大值成份值相对应的源代数。 应用程序包括排序算法、 推荐系统、 主要元件分析( PCA) 等。 在本文中, 我们引入了乘法避免电源迭代( MAPI), 取代常规电源迭代( RPI) 的标准 $\ ell_ 2$- 内产产品, 代之以与 $\ ell_ 1$ 标准有关的无倍化矢量产品 。 准确的说, MAPI 需要 $n/ times n$ 矩阵, 而 RPI 需要 $n2$ 倍增乘法 。 因此, MAPI 提供大幅的倍化操作数量的减少, 据知在能源消耗方面成本很高。 我们为以 MAPI 为基础的图像重建以及基于图形的排序算法提供应用 。 与 RPI 相比, MAPI 不仅通常比较快得多,, 也提供更高的性操作。