Biomechanical models often need to describe very complex systems, organs or diseases, and hence also include a large number of parameters. One of the attractive features of physics-based models is that in those models (most) parameters have a clear physical meaning. Nevertheless, the determination of these parameters is often very elaborate and costly and shows a large scatter within the population. Hence, it is essential to identify the most important parameter for a particular problem at hand. In order to distinguish parameters which have a significant influence on a specific model output from non-influential parameters, we use sensitivity analysis, in particular the Sobol method as a global variance-based method. However, the Sobol method requires a large number of model evaluations, which is prohibitive for computationally expensive models. We therefore employ Gaussian processes as a metamodel for the underlying full model. Metamodelling introduces further uncertainty, which we also quantify. We demonstrate the approach by applying it to two different problems: nanoparticle-mediated drug delivery in a multiphase tumour-growth model, and arterial growth and remodelling. Even relatively small numbers of evaluations of the full model suffice to identify the influential parameters in both cases and to separate them from non-influential parameters. The approach also allows the quantification of higher-order interaction effects. We thus show that a variance-based global sensitivity analysis is feasible for computationally expensive biomechanical models. Different aspects of sensitivity analysis are covered including a transparent declaration of the uncertainties involved in the estimation process. Such a global sensitivity analysis not only helps to massively reduce costs for experimental determination of parameters but is also highly beneficial for inverse analysis of such complex models.
翻译:生物机能模型往往需要描述非常复杂的系统、器官或疾病,因此也需要包括大量参数。物理学模型的一个有吸引力的特征是,在这些模型(最大部分)参数中,参数具有明显的物理意义。然而,确定这些参数往往非常复杂,费用昂贵,而且显示在人口内部的分布很广。因此,必须确定当前特定问题的最重要参数。为了区分对特定模型产出有重大影响的参数与非渗透性参数,我们使用敏感度分析,特别是Sobol方法作为基于差异的全球方法。然而,Sobol方法需要大量模型评估,而这些模型对计算成本昂贵模型来说过于昂贵。因此,我们使用高斯进程作为整个模型的元模型模型模型。模型还引入进一步不确定性,我们对此也加以量化。我们通过将它应用于两个不同的问题来展示这一方法:以纳米为中介的药物在多阶段的肿瘤增长模型中交付,以及有利增长和再建模。在全面模型中,即使数量较少的评价也不足以确定具有高估量性的全球分析,因此,在高度分析中也能够将高估量的参数用于不同的分析。我们所覆盖的案例和计算,因此,从不同的生物计算方法中可以分别展示。我们用这种分析。我们用它来证明。一种方法来证明。一种不具有高估量性分析。一种不具有高估量的模型分析。一种方法来证明。一种不具有高估量性的方法是,从一种非的计算。一种不同的例子。一种不具有高估的计算方法,从一种非的计算。我们的例子。一种非的计算方法,从一种非的计算。我们法的计算方法,从一种不同的推算。一种非的计算。一种不同的推论。