As the COVID-19 ravaging through the globe, accurate forecasts of the disease spread is crucial for situational awareness, resource allocation, and public health decision-making. Alternative to the traditional disease surveillance data collected by the United States (US) Centers for Disease Control and Prevention (CDC), big data from Internet such as online search volumes has been previously shown to contain valuable information for tracking infectious disease dynamics. In this study, we evaluate the feasibility of using Internet search volume of relevant queries to track and predict COVID-19 pandemic. We found strong association between COVID-19 death trend and the search volume of symptom-related queries such as "loss of taste". Then, we further develop an influenza-tracking model to predict future 4-week COVID-19 deaths on the US national level, by combining search volume information with COVID-19 time series information. Encouraged by the 20% error reduction on national level comparing to the baseline time series model, we additionally build state-level COVID-19 deaths models, leveraging the cross-state cross-resolution spatial temporal framework that pools information from search volume and COVID-19 reports across states, regions and the nation. These variants of ARGOX are then aggregated in a winner-takes-all ensemble fashion to produce the final state-level 4-week forecasts. Numerical experiments demonstrate that our method steadily outperforms time series baseline models, and achieves the state-of-the-art performance among the publicly available benchmark models. Overall, we show that disease dynamics and relevant public search behaviors co-evolve during the COVID-19 pandemic, and capturing their dependencies while leveraging historical cases/deaths as well as spatial-temporal cross-region information will enable stable and accurate US national and state-level forecasts.


翻译:由于COVID-19在全球肆虐,对疾病传播的准确预测对局势意识、资源分配和公共卫生决策至关重要。除了美国疾病控制和预防中心(CDC)收集的传统疾病监测数据之外,互联网上的大数据,如在线搜索数量,以前显示含有跟踪传染病动态的宝贵信息。在这项研究中,我们评估了使用互联网搜索大量相关查询来跟踪和预测COVID-19大流行的可行性。我们发现COVID-19死亡趋势与“品味损失”等症状相关查询数量的搜索密切相关。随后,我们进一步开发了流感跟踪模型,以预测今后4周COVID-19美国国家一级的死亡情况,将搜索数量信息与COVID-19时间序列的时间序列信息结合起来,从而鼓励了使用互联网搜索大量相关查询来跟踪和预测COVID-19大流行流行。我们进一步建立了州级的COVID-19死亡模型,利用跨州跨分辨率空间时间框架,将搜索数量和COVID-19案例的相关信息汇集到各州、各地区和全国的COVD19级数据序列中,从而展示了我们4个州、州和州际的SOral-ral-ral-ral-ral-ral-ral-ration-ral-ral-ral-ral-ration-ral-ration-ral-ral-ral-l-l-l-sal-l-l-l-l-l-l-l-l-lation-s-s-s-s-s-l-l-lation-s-l-l-l-s-s-lation-lation-lation-lation-l-s-lation-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年1月27日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员