Text-to-visualization (text-to-vis) models have become valuable tools in the era of big data, enabling users to generate data visualizations and make informed decisions through natural language queries (NLQs). Despite their widespread application, the security vulnerabilities of these models have been largely overlooked. To address this gap, we propose VisPoison, a novel framework designed to identify these vulnerabilities of current text-to-vis models systematically. VisPoison introduces two types of triggers that activate three distinct backdoor attacks, potentially leading to data exposure, misleading visualizations, or denial-of-service (DoS) incidents. The framework features both proactive and passive attack mechanisms: proactive attacks leverage rare-word triggers to access confidential data, while passive attacks, triggered unintentionally by users, exploit a first-word trigger method, causing errors or DoS events in visualizations. Through extensive experiments on both trainable and in-context learning (ICL)-based text-to-vis models, \textit{VisPoison} achieves attack success rates of over 90\%, highlighting the security problem of current text-to-vis models. Additionally, we explore two types of defense mechanisms against these attacks, but the results show that existing countermeasures are insufficient, underscoring the pressing need for more robust security solutions in text-to-vis systems.
翻译:暂无翻译