We consider the following common network analysis problem: given a degree sequence $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb N^n$ return a uniform sample from the ensemble of all simple graphs with matching degrees. In practice, the problem is typically solved using Markov Chain Monte Carlo approaches, such as Edge-Switching or Curveball, even if no practical useful rigorous bounds are known on their mixing times. In contrast, Arman et al. sketch Inc-Powerlaw, a novel and much more involved algorithm capable of generating graphs for power-law bounded degree sequences with $\gamma \gtrapprox 2.88$ in expected linear time. For the first time, we give a complete description of the algorithm and add novel switchings. To the best of our knowledge, our open-source implementation of Inc-Powerlaw is the first practical generator with rigorous uniformity guarantees for the aforementioned degree sequences. In an empirical investigation, we find that for small average-degrees Inc-Powerlaw is very efficient and generates graphs with one million nodes in less than a second. For larger average-degrees, parallelism can partially mitigate the increased running-time.
翻译:我们考虑了以下常见的网络分析问题: 给一个度序列 $\ mathbf{d} = (d_ 1,\ dots, d_n) = (d_ 1,\ dots, d_n) = 在\ mathbN \ mathbN $n$ $n$xb 返回所有带有匹配度的简单图形的共合体的统一样本。 实际上, 问题通常通过Markov 链子蒙特卡洛( Monte Carlo) 的方法来解决, 例如 电动开关 或 Curveball, 即使在其混合时间上并不知道实际有用的严格严格的严格严格的严格界限 。 相反, Arman 等人 等素描 Inc- Powerlaw, 是一种新颖的、 更多参与的算法, 能够在预期的线性时间里生成电动定约束度序列的图表。 我们第一次对算法做了完整描述, 并添加了新的转换。 根据我们所知, 我们的开放源实施 Inc- powlaw 是第一个具有严格统一性保证的首度序列的第一个实用生成器。 。 在经验调查中, 我们发现, 对于小平均度的 Ind- pow- hust- hust- hust- pal- pal- pal- pals is palmasrmas lance lance last be last last last