Modal shift in public transport as a consequence of a disruption on a line has in some cases unforeseen consequences such as an increase in congestion in the rest of the network. How information is provided to users and their behavior plays a central role in such configurations. We introduce here a simple and stylised agent-based model aimed at understanding the impact of behavioural parameters on modal shift. The model is applied on a case study based on a stated preference survey for a segment of Paris suburban train network. We systematically explore the parameter space and show non-trivial patterns of congestion for some values of discrete choice parameters linked to perceived wait time and congestion. We also apply a genetic optimisation algorithm to the model to search for optimal compromises between congestion in different modes.
翻译:由于线条中断造成公共交通模式的改变,有时会产生意外后果,例如网络其余部分的拥挤现象增加。如何向用户提供信息及其行为在这种配置中起着中心作用。我们在此采用一个简单和基于机械化的代理模型,旨在了解行为参数对模式转移的影响。该模型是根据对巴黎郊区火车网某段路段的公开偏好调查进行的一项案例研究应用的。我们系统地探索参数空间,并显示与所感觉到的等待时间和拥挤有关的离散选择参数的某些值的非三联性拥堵模式。我们还将基因优化算法用于该模型,以寻求不同模式的拥挤之间的最佳妥协。