We show that risk-constrained dynamic resource allocation problems with general integrable nonconvex instantaneous service functions exhibit zero duality gap. We consider risk constraints which involve convex and positively homogeneous risk measures admitting dual representations with bounded risk envelopes, and are strictly more general than expectations. Beyond expectations, particular risk measures supported within our setting include the conditional value-at-risk, the mean-absolute deviation (including the non-monotone case), certain distributionally robust representations and more generally all real-valued coherent risk measures on the space ${\cal L}_{1}$. Our proof technique relies on risk duality in tandem with Uhl's weak extension of Lyapunov's convexity theorem for vector measures taking values in general Banach spaces.
翻译:我们发现,风险限制的动态资源分配问题与一般不可转换的、不可转换的即时服务功能存在零双重性差距。 我们考虑风险限制,这些风险限制涉及集中和积极一致的风险措施,允许有约束风险封套的双重代表机构,而且严格来说比预期更为普遍。 除了预期之外,我们环境中支持的特殊风险措施包括有条件风险价值、平均绝对偏差(包括非单子案件)、某些分配上稳健的表述以及更一般而言所有实际价值一致的空间风险措施$$(cal L ⁇ 1)。我们的证据技术依靠风险双重性,与Uhl弱地扩展Lyapunov在普通的Banach空间采取矢量措施的矢量理论。