We investigate a numerical behaviour of robust deterministic optimal control problem governed by a convection diffusion equation with random coefficients by approximating statistical moments of the solution. Stochastic Galerkin approach, turning the original stochastic problem into a system of deterministic problems, is used to handle the stochastic domain, whereas a discontinuous Galerkin method is used to discretize the spatial domain due to its better convergence behaviour for convection dominated optimal control problems. A priori error estimates are derived for the state and adjoint in the energy norm and for the deterministic control in $L^2$-norm. To handle the curse of dimensionality of the stochastic Galerkin method, we take advantage of the low-rank variant of GMRES method, which reduces both the storage requirements and the computational complexity by exploiting a Kronecker-product structure of the system matrices. The efficiency of the proposed methodology is illustrated by numerical experiments on the benchmark problems with and without control constraints.
翻译:我们调查了由对流扩散方程式和随机系数调节的稳健确定性最佳控制问题的数字行为,该方程式与解决问题的统计时刻相近。Stochastic Galerkin 方法将最初的随机问题转化为确定性问题的系统,用于处理随机领域,而由于对流最佳控制问题更加趋同,因此使用不连续的Galerkin 方法将空间领域分解。先验错误估计是针对能源规范中的国家和对应的,以及确定性控制在2美元-诺姆的。为了处理对随机加勒金方法的维度的诅咒,我们利用GMRES方法的低层次变体,该变体通过利用系统矩阵的克伦克尔产品结构来减少储存要求和计算复杂性。提议的方法学的效率通过对控制制约下和没有控制限制的基准问题进行数字实验来说明。