We study efficient PAC learning of homogeneous halfspaces in $\mathbb{R}^d$ in the presence of malicious noise of Valiant (1985). This is a challenging noise model and only until recently has near-optimal noise tolerance bound been established under the mild condition that the unlabeled data distribution is isotropic log-concave. However, it remains unsettled how to obtain the optimal sample complexity simultaneously. In this work, we present a new analysis for the algorithm of Awasthi et al. (2017) and show that it essentially achieves the near-optimal sample complexity bound of $\tilde{O}(d)$, improving the best known result of $\tilde{O}(d^2)$. Our main ingredient is a novel incorporation of a matrix Chernoff-type inequality to bound the spectrum of an empirical covariance matrix for well-behaved distributions, in conjunction with a careful exploration of the localization schemes of Awasthi et al. (2017). We further extend the algorithm and analysis to the more general and stronger nasty noise model of Bshouty et al. (2002), showing that it is still possible to achieve near-optimal noise tolerance and sample complexity in polynomial time.


翻译:在Valiant (1985年) 恶意噪音的情况下,我们研究PAC 有效地学习了美元(mathbb{R ⁇ d$) 的同质半径。这是一个具有挑战性的噪音模型,直到最近才在无标签数据分布为北冰洋正对冷凝层的温和条件下建立了接近最佳的噪音耐受度。然而,它仍然未解决如何同时获得最佳样本复杂性的问题。在这项工作中,我们提出了对Awasthi等人的算法(2017年)进行的新分析,并表明它基本上达到了美元(d)的近最佳样本复杂性,改善了$\tilde{O}(d ⁇ 2) 的已知最佳结果。我们的主要成份是新颖地整合了Chernoff型不平等,将经验性常态分布矩阵的频谱捆绑在一起,同时仔细探索Awasthi等人的本地化计划(2017年) 。我们进一步将算法和分析扩大到Bwashothi 等人的更普遍、更强的噪音模型,从而有可能实现Bshoutimal Exmal Exmissual 和等的复杂度。(2002年) 。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员