We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and $9R$. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.
翻译:我们利用Lennard-Jones有限射程潜在模型,对十九种不同周期结构的稳定性进行系统研究,该模型讨论压力、潜在短跑、截断距离和伦纳德-Jones前导体的影响。考虑的结构是六边形近距离(hcp)、面心立立方体(fcc)和十七种其他多式堆叠序列,如dhcp和9R$。我们发现,在某些压力和截断距离值下,无论是fcc或hcp都没有如先前所记载的那样是地面状态结构,而是不同的多式序列。这种行为表明,对潜力尾部的尾部严重依赖。