To address the monaural speech enhancement problem, numerous research studies have been conducted to enhance speech via operations either in time-domain on the inner-domain learned from the speech mixture or in time--frequency domain on the fixed full-band short time Fourier transform (STFT) spectrograms. Very recently, a few studies on sub-band based speech enhancement have been proposed. By enhancing speech via operations on sub-band spectrograms, those studies demonstrated competitive performances on the benchmark dataset of DNS2020. Despite attractive, this new research direction has not been fully explored and there is still room for improvement. As such, in this study, we delve into the latest research direction and propose a sub-band based speech enhancement system with perceptually-motivated optimization and dual transformations, called PT-FSE. Specially, our proposed PT-FSE model improves its backbone, a full-band and sub-band fusion model, by three efforts. First, we design a frequency transformation module that aims to strengthen the global frequency correlation. Then a temporal transformation is introduced to capture long range temporal contexts. Lastly, a novel loss, with leverage of properties of human auditory perception, is proposed to facilitate the model to focus on low frequency enhancement. To validate the effectiveness of our proposed model, extensive experiments are conducted on the DNS2020 dataset. Experimental results show that our PT-FSE system achieves substantial improvements over its backbone, but also outperforms the current state-of-the-art while being 27\% smaller than the SOTA. With average NB-PESQ of 3.57 on the benchmark dataset, our system offers the best speech enhancement results reported till date.


翻译:为了解决声调增强问题,进行了许多研究,以便通过以下操作加强言语能力:在从语音混合中学习的内部域的时间空域上,或在固定的全频短短时间Fleier变换光谱的时间频域上,通过时间空域,加强言语能力;最近,提议了几项关于基于亚频段的言语增强的研究;通过次频光谱操作加强演讲,这些研究显示了DNS20基准数据集的竞争性性能;尽管有吸引力,但这一新的研究方向尚未得到充分探索,仍有改进的余地。因此,在本研究中,我们进入最新的研究方向,并提议一个基于基于亚频谱的语音增强系统,包括感知性优化和双频变光。特别,我们提议的PT-FSE模型通过三次努力改进其骨干、全频和子波谱融合模型。首先,我们设计了一个频率变换模块模块模块模块,目的是加强全球频率的改善。随后引入了时间变换,以获取长期的时空背景。最后,一个基于感知频度的子系统更新的语音感测,然后是我们提议的Slovelyal Styal 。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员