Consider the problem of learning undirected graphical models on trees from corrupted data. Recently Katiyar et al. showed that it is possible to recover trees from noisy binary data up to a small equivalence class of possible trees. Their other paper on the Gaussian case follows a similar pattern. By framing this as a special phylogenetic recovery problem we largely generalize these two settings. Using the framework of linear latent tree models we discuss tree identifiability for binary data under a continuous corruption model. For the Ising and the Gaussian tree model we also provide a characterisation of when the Chow-Liu algorithm consistently learns the underlying tree from the noisy data.
翻译:考虑从腐败数据中学习关于树木的无方向图形模型的问题。 最近Katiyar等人指出,从噪音的二进制数据到可能树木的一小类等值小树可以回收树木。 他们关于高山案例的另一篇论文也遵循类似的模式。 通过将此描述为特殊的植物基因恢复问题,我们大致概括了这两个设置。 我们利用线性潜伏树模型的框架, 在持续腐败模型下讨论树木可识别性数据。 对于Ising 和 Gausian 树模型, 我们还提供了Chow-Liu 算法从噪音数据中不断学习底树的特性。