Sign Language Translation (SLT) is a promising technology to bridge the communication gap between the deaf and the hearing people. Recently, researchers have adopted Neural Machine Translation (NMT) methods, which usually require large-scale corpus for training, to achieve SLT. However, the publicly available SLT corpus is very limited, which causes the collapse of the token representations and the inaccuracy of the generated tokens. To alleviate this issue, we propose ConSLT, a novel token-level \textbf{Con}trastive learning framework for \textbf{S}ign \textbf{L}anguage \textbf{T}ranslation , which learns effective token representations by incorporating token-level contrastive learning into the SLT decoding process. Concretely, ConSLT treats each token and its counterpart generated by different dropout masks as positive pairs during decoding, and then randomly samples $K$ tokens in the vocabulary that are not in the current sentence to construct negative examples. We conduct comprehensive experiments on two benchmarks (PHOENIX14T and CSL-Daily) for both end-to-end and cascaded settings. The experimental results demonstrate that ConSLT can achieve better translation quality than the strong baselines.


翻译:手语翻译是一种重要的技术,可以弥补聋哑人和正常听觉人之间的沟通隔阂。最近,研究者采用了神经机器翻译(NMT)方法,但由于公开的手语翻译语料库非常有限,导致生成的标记表示失效和准确性低下。为了解决这个问题,我们提出了ConSLT,这是一种新颖的基于标记对比的手语翻译框架,通过将标记级对比学习纳入到翻译过程中来学习有效的标记表示。具体而言,ConSLT在解码过程中将每个标记及其通过不同的dropout masks生成的副本视为正对样本,然后随机从词汇表中抽取K个未在当前句子中出现的标记作为负样本。我们对两个基准数据集(PHOENIX14T 和 CSL-Daily)进行了全面的实验,分别进行了端到端和级联设置的比较。实验结果表明,ConSLT可以比强基线方法取得更好的翻译质量。

0
下载
关闭预览

相关内容

【SIGGRAPH 2022】域增强的任意图像风格对比迁移方法
专知会员服务
25+阅读 · 2022年4月20日
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【SIGGRAPH 2022】域增强的任意图像风格对比迁移方法
专知会员服务
25+阅读 · 2022年4月20日
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员