A temporal graph $\mathcal{G}=(G,\lambda)$ can be represented by an underlying graph $G=(V,E)$ together with a function $\lambda$ that assigns to each edge $e\in E$ the set of time steps during which $e$ is present. The reachability graph of $\mathcal{G}$ is the directed graph $D=(V,A)$ with $(u,v)\in A$ if only if there is a temporal path from $u$ to $v$. We study the Reachability Graph Realizability (RGR) problem that asks whether a given directed graph $D=(V,A)$ is the reachability graph of some temporal graph. The question can be asked for undirected or directed temporal graphs, for reachability defined via strict or non-strict temporal paths, and with or without restrictions on $\lambda$ (proper, simple, or happy). Answering an open question posed by Casteigts et al. (Theoretical Computer Science 991 (2024)), we show that all variants of the problem are NP-complete, except for two variants that become trivial in the directed case. For undirected temporal graphs, we consider the complexity of the problem with respect to the solid graph, that is, the graph containing all edges that could potentially receive a label in any realization. We show that the RGR problem is polynomial-time solvable if the solid graph is a tree and fixed-parameter tractable with respect to the feedback edge set number of the solid graph. As we show, the latter parameter can presumably not be replaced by smaller parameters like feedback vertex set or treedepth, since the problem is W[2]-hard with respect to these parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
15+阅读 · 2018年2月4日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员