In this work, a Bayesian model calibration framework is presented that utilizes goal-oriented a-posterior error estimates in quantities of interest (QoIs) for classes of high-fidelity models characterized by PDEs. It is shown that for a large class of computational models it is possible to develop a computationally inexpensive procedure for calibrating parameters of high-fidelity models of physical events when the parameters of a low-fidelity (surrogate) models are known with acceptable accuracy. The main ingredient in the proposed model calibration scheme are goal-oriented a-posteriori estimates of error in QoIs computed using a so-called lower fidelity model compared to those of an uncalibrated higher fidelity model. The estimates of error in QoIs are used to define likelihood functions in Bayesian inversion analysis. A standard Bayesian approach is employed to compute the posterior distribution of model parameters of high-fidelity models. As applications, parameters in a quasi-linear second-order elliptic boundary-value problem (BVP) are calibrated using a second-order linear elliptic BVP. In a second application, parameters of a tumor growth model involving nonlinear time-dependent PDEs are calibrated using a lower fidelity linear tumor growth model with known parameter values.
翻译:在这项工作中,提出了贝叶西亚模型校准框架,对以PDEs为特征的高不忠模型类别使用目标导向的、具有兴趣数量的意外误差估计值(QIs),对以PDEs为特征的高不忠诚模型类别使用高不忠诚模型,显示对于一大批计算模型,有可能开发一种计算成本低廉的程序,用于校准高不忠诚(surogate)模型的物理事件高不忠模型参数。拟议的模型校准方案的主要成分是,对使用所谓的低不忠诚模型(QIs)对QAIS计算出的误差进行目标导向的意外误差估计值估计值,与不协调的更高忠诚模型相比。对于大量计算模型(Surrogate)参数的参数,采用标准贝伊西亚方法对高不忠诚模型模型模型的后表分布进行计算。作为应用准线性二级地等离线第二级地差边界值参数(BVPP),使用已知的直线性直径直线性直径模型进行校准。