We establish finite-sample Berry-Esseen theorems for the entrywise limits of the eigenvectors and their one-step refinement for sparse random graphs. For the entrywise limits of the eigenvectors, the average expected degree is allowed to grow at the rate $\Omega(\log n)$, where $n$ is the number of vertices, and for the entrywise limits of the one-step refinement of the eigenvectors, we require the expected degree to grow at the rate $\omega(\log n)$. The one-step refinement is shown to have a smaller entrywise covariance than the eigenvectors in spectra. The key technical contribution towards the development of these limit theorems is a sharp finite-sample entrywise eigenvector perturbation bound. In particular, the existed error bounds on the two-to-infinity norms of the higher-order remainders are not sufficient when the graph average expected degree is proportional to $\log n$. Our proof relies on a decoupling strategy using a ``leave-one-out'' construction of auxiliary matrices.
翻译:我们为稀有随机图形的入门限制及其一步骤精细度的细化设置了一定的sample Berry-Esseen 理论值。 对于源数的入门限制,允许平均预期度以美元/美元(log n)的速率增长,其中美元为顶点数,对于对源数进行一步骤精细改进的入门限制,我们要求以美元/omega(log n)的速率增长预期的幅度。一步骤的精细比光谱中的源数差小。对于这些源数的进门限制的进门限制,允许平均预期度以美元(log n)的进门限制值增长。对于这些源数的开发,关键的技术贡献是尖锐的有限- ample 入门性源数渗透约束。特别是,当图形平均预期度与美元/ log 成比例时,高端数剩余值的二至不完全的误差值。 我们的验证依靠使用正置基数的构建策略。