We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of the subgraph is the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense bipartite graphs, we further show that it is W[2]-hard parameterized by the number of sets in the optimum solution. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on $(n-4)$-regular graphs.
翻译:我们考虑将图表分割成非固定数量的非重叠最大密度子图的问题。 分区的密度是子图密度的总和, 即子图的密度是其边缘数和脊椎数的比例。 这个问题叫做 Dense Graph 分区, 已知在一般图和多圆时间溶解的树上是NP硬的, 多圆时间为2 准。 在本文中, 我们研究将 Dense 图形分割限制在特定的稀薄和稠密的图形类中。 特别是, 我们证明在密集的双部分图和立方图上是NP硬的。 在稠密的双部分图中, 我们进一步显示它是W[ 2] 硬的参数, 由最佳溶解方法中的各种数组成。 在$( 美元) 的密度图形上, 在最小的 $- 美元-3 和 美元- PP- 美元- 双正值 的图形上是NP- 美元- 美元- 美元- 美元- 双正对等的正对数 。