Most numerical methods for time integration use real time steps. Complex time steps provide an additional degree of freedom, as we can select the magnitude of the step in both the real and imaginary directions. By time stepping along specific paths in the complex plane, integrators can gain higher orders of accuracy or achieve expanded stability regions. We show how to derive these paths for explicit and implicit methods, discuss computational costs and storage benefits, and demonstrate clear advantages for complex-valued systems like the Schrodinger equation. We also explore how complex time stepping also allows us to break the Runge-Kutta order barrier, enabling 5th order accuracy using only five function evaluations for real-valued differential equations.
翻译:时间整合的大多数数字方法都使用实时步骤。 复杂的时间步骤提供了额外程度的自由,因为我们可以选择真实方向和想象方向上的步骤的大小。 当在复杂的平面上走具体路径时,集成者可以得到更高的准确度,或者实现更大的稳定性区域。 我们展示了如何为明确和隐含的方法找到这些路径,讨论计算成本和储存效益,并展示了像施罗德宁格方程式这样的复杂价值系统的明显优势。 我们还探索了复杂的时间步骤如何使我们能够打破龙格-库塔命令屏障,使得第五级的准确性能够仅使用对实际价值差异方程式的五项功能评价。