Missing data is common in applied data science, particularly for tabular data sets found in healthcare, social sciences, and natural sciences. Most supervised learning methods only work on complete data, thus requiring preprocessing such as missing value imputation to work on incomplete data sets. However, imputation alone does not encode useful information about the missing values themselves. For data sets with informative missing patterns, the Missing Indicator Method (MIM), which adds indicator variables to indicate the missing pattern, can be used in conjunction with imputation to improve model performance. While commonly used in data science, MIM is surprisingly understudied from an empirical and especially theoretical perspective. In this paper, we show empirically and theoretically that MIM improves performance for informative missing values, and we prove that MIM does not hurt linear models asymptotically for uninformative missing values. Additionally, we find that for high-dimensional data sets with many uninformative indicators, MIM can induce model overfitting and thus test performance. To address this issue, we introduce Selective MIM (SMIM), a novel MIM extension that adds missing indicators only for features that have informative missing patterns. We show empirically that SMIM performs at least as well as MIM in general, and improves MIM for high-dimensional data. Lastly, to demonstrate the utility of MIM on real-world data science tasks, we demonstrate the effectiveness of MIM and SMIM on clinical tasks generated from the MIMIC-III database of electronic health records.


翻译:缺少的数据在应用数据科学中很常见,特别是在医疗、社会科学和自然科学中发现的表格数据集中,缺少的数据在应用数据科学中很常见,特别是在医疗、社会科学和自然科学中发现的表格数据集中。大多数受监督的学习方法仅对完整数据进行研究,因此,需要事先处理,例如缺少价值估算,才能对不完整的数据集进行不完整的数据集。然而,光是估算本身并没有将关于缺失值的有用信息编码。对于具有信息缺失模式的数据集,增加指标变量以表明缺失模式的缺失指标方法(MIM)可以结合估算模型来改进模型性能。虽然数据科学中通常使用的方法,但MIM(SIM)却从经验上,特别是理论角度,令人惊讶地对完整的数据进行了研究。我们从经验上和理论上都显示MIM(MIM)改进了线性模型,我们从MIM(MIM(MIM)的高级数据记录到MIM(MIM)的高级数据记录,我们从实验性地表明MIM(MIM)和MIM(M-M-M-M-M-M-M)的高级数据记录,我们从一般的高级数据记录上改进了数据效率。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员