We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret ${O} \big( \varepsilon^{-1} \log^{1.5}{d} \big)$ where $d$ is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are ${O} \big( \varepsilon^{-1} \min\big\{d, T^{1/3}\log d\big\} \big)$. We also develop an adaptive algorithm for the small-loss setting with regret $O(L^\star\log d + \varepsilon^{-1} \log^{1.5}{d})$ where $L^\star$ is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret $O \big(\varepsilon^{-1} d^{1.5} \big)$, as well as an algorithm for the smooth case with regret $O \big( \varepsilon^{-2/3} (dT)^{1/3} \big)$, both significantly improving over existing bounds in the non-realizable regime.
翻译:在有零损失解决方案的可实现环境中,我们考虑在线学习问题,并提出新的差异私人(DP)算法,以获得接近最佳的遗憾。关于专家在线预测的问题,我们设计新的算法,以获得接近最佳的遗憾${O}\ big(cvarepsilon}-1}\log=1.5<unk> d}\ big)美元,其中专家人数为美元。这大大改进了DP无法实现的最遗憾界限。此外,我们认为,在真实的设置中,DP conxligal$\ v/3}\min\ big<unk> d, T<unk> 1/3<unk> _Big} d\big}\big\\\\ big\\ big}\ big美元。我们还设计了一种适应性算法,以遗憾$(L<unk> starn\log d+\ varepsil%-1} 美元,其中美元是最佳专家的彻底损失。此外,我们认为,在真实的设置中,DP的在线配置的配置是美元=leval_lal_lal_lal_1} ralgalgal case, 和提议, ralisalislation ral ral ral rus (lus) 和近为近的平 。</s>