3D object detection is an important task, especially in the autonomous driving application domain. However, it is challenging to support the real-time performance with the limited computation and memory resources on edge-computing devices in self-driving cars. To achieve this, we propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques, to enable real-time inference of 3D object detection on the resource-limited edge-computing devices. Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically, without human expertise and assistance. And the evaluated performance of the unified schemes can be fed back to train the generator RNN. The experimental results demonstrate that the proposed framework firstly achieves real-time 3D object detection on mobile devices (Samsung Galaxy S20 phone) with competitive detection performance.
翻译:3D物体探测是一项重要任务,特别是在自动驾驶应用领域。然而,在自行驾驶的汽车中,用有限的计算和记忆资源支持边缘计算和存储装置的实时性能是一项艰巨的任务。为此,我们提出一个汇编器统一框架,纳入网络增强和用强化学习技术运行搜索,以便能够在资源有限的边缘计算装置上实时推断3D物体探测。具体地说,一个发电机经常性神经网络(RNN)被用来提供网络增强和自动处理搜索的统一计划,而没有人的专门知识和援助。而且,对统一的计划的评价性能可以反馈给对发电机RNN的训练。实验结果表明,拟议的框架首先在具有竞争性检测性能的移动装置(Samsung Galaxy S20电话)上实现实时3D物体探测。