Over a complete Riemannian manifold of finite dimension, Greene and Wu introduced a convolution, known as Greene-Wu (GW) convolution. In this paper, we introduce a reformulation of the GW convolution. Using our reformulation, many properties of the GW convolution can be easily derived, including a new formula for how the curvature of the space would affect the curvature of the function through the GW convolution. Also enabled by our new reformulation, an improved method for gradient estimation over Riemannian manifolds is introduced. Theoretically, our gradient estimation method improves the order of estimation error from $O \left( \left( n + 3 \right)^{3/2} \right)$ to $O \left( n^{3/2} \right)$, where $n$ is the dimension of the manifold. Empirically, our method outperforms the best existing method for gradient estimation over Riemannian manifolds, as evidenced by thorough experimental evaluations.
翻译:Greene和Wu引入了一个称为Greene-Wu(GW)的变迁法。在本文中,我们引入了重塑GW的变迁法。利用我们的重整,可以很容易地得出GW变迁的许多特性,包括一个新的公式,说明空间的曲率如何通过GW变迁影响函数的曲度。我们的新改制还促成了一个改进的Riemannian 变迁法。理论上,我们的梯度估测法改进了估算错误的顺序,从O left(n + 3\right)\\%3/2}\right)美元到$O left(n3/2}\right)美元,其中美元是多元值的维度。我们的方法超越了目前对Riemann 倍数的梯度估测法,正如彻底的实验性评估所证明的那样。