This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions without requiring any knowledge of the distribution models. The computation of our bound is time-efficient and memory-efficient and only requires finite samples. The proposed bound shows its value in one-class classification and domain shift analysis. Specifically, in one-class classification, we build a novel one-class classifier by converting the bound into a confidence score function. Unlike most one-class classifiers, the training process is not needed for our classifier. Additionally, the experimental results show that our classifier \textcolor{\colorname}{can be accurate with} only a small number of in-class samples and outperforms many state-of-the-art methods on various datasets in different one-class classification scenarios. In domain shift analysis, we propose a theorem based on our bound. The theorem is useful in detecting the existence of domain shift and inferring data information. The detection and inference processes are both computation-efficient and memory-efficient. Our work shows significant promise toward broadening the applications of overlap-based metrics.
翻译:本文建议对两种概率分布之间的重叠指数进行简单、简单和上限计算,而不需要对分布模型有任何了解。 我们的约束值的计算是时间效率和内存效率高的,只需要有限的样本。 拟议的约束值显示单级分类和域位转移分析的价值。 具体地说, 在单级分类中, 我们通过将约束值转换成信任分数功能, 建立一个新型的单级分类法。 与大多数单级分类法不同, 我们的分类法不需要培训程序。 此外, 实验结果显示, 我们的分类法 \ textcolor $colorname ⁇ 能够精确地使用少量的分类样本, 并在不同的单级分类法情景中, 超越了许多最先进的方法。 在域位转移分析中, 我们根据我们的约束法, 提出一个标本。 该标本有助于检测域变换和推断数据信息的存在。 检测和推断过程既具有计算效率和记忆效率。 我们的工作显示, 在扩大基于重叠的测量法的应用方面有重大希望。